Main Conference
Session KNTU-S1
Keynote
Conference
9:20 AM
—
10:00 AM KST
Local
May 25 Mon, 7:20 PM
—
8:00 PM CDT
Next Steps and Challenges of 5G Network Evolution
Young Lee, Head of Network Architecture, Samsung
23
On April 2019, the world-first 5G network was launched commercially in South Korea. The early stage of 5G roll-out was targeted only to enhanced Mobile BroadBand (eMBB) service, and its control depended on LTE as an anchor. The real 5G will come with more enhanced features to support higher capacity, Integrated Access & Backhaul (IAB), Ultra-Reliable and Low Latency Communications (URLLC), Industrial IoT, Vehicle-to-everything (V2X), and AR/VR. 5G Stand-alone (SA) deployment is a first step to show full potential of 5G as 5G SA brings the foundation for end-to-end (E2E) service pipeline across different domains –Radio Access Network (RAN), Core Network (CN), Transport Network (TN), and Data Network (DN) – to accelerate innovations of Mobile Network Operators (MNO). While innovations are important, network monetization and Operating Expenditure (OPEX)/ Capital Expenditure (CAPEX) reduction are key concerns of Mobile Network Operators (MNOs) to justify huge investment costs. In this regard, the benefits from virtualization, network slicing and automation are driving forces for 5G network evolution. This talk explores the technological challenges from trending areas such as virtualized RAN, E2E network slicing, and network automation. In addition, this talk presents a view on the central role of virtualization and cloudification towards technological innovation and cost reduction.
Biography
Young Lee has been in telecommunication industry over 30 years. His specialty includes network architecture, SDN/NFV, network orchestration, 5G transport and core network design, network control and management. He is currently Head of Network Architecture at Samsung Electronics Networks Business where he is leading network architecture evolution and strategy to transform various elements such as RAN, Core, Transport with AI/NFV/SDN and Orchestration into integrated solutions. At Huawei US Research center in Texas USA (2006-2019) he was Technical Senior Director and Distinguished Engineer and led several key technology concept developments, standardization and evangelization in the areas of optical control plane, path computation, transport SDN, network cloud platform and orchestration. At Ceterus Network (2001-2006), he was Co-Founder and Chief Network Architect and led a large-scale packet switching system development. At AT&T Labs (1995-2000), He was Principal Member of Technical Staff where he led various systems engineering projects including AT&T next generation router evolution, AT&T common IP/MPLS backbone routing and management, etc. At AT&T Bell Labs (1987-1995), he was Member of Technical Staff and led several routing and switching system engineering projects and network traffic management system development. He received B.A. in Applied Mathematics from U.C. Berkeley (1986), M.S. in Operations Research from Stanford University (1987), and Ph.D. in Decision Science and Engineering Systems from Rensselaer Polytechnic Institute (1996) via AT&T Bell Labs’ doctoral support program.
Biography
Young Lee has been in telecommunication industry over 30 years. His specialty includes network architecture, SDN/NFV, network orchestration, 5G transport and core network design, network control and management. He is currently Head of Network Architecture at Samsung Electronics Networks Business where he is leading network architecture evolution and strategy to transform various elements such as RAN, Core, Transport with AI/NFV/SDN and Orchestration into integrated solutions. At Huawei US Research center in Texas USA (2006-2019) he was Technical Senior Director and Distinguished Engineer and led several key technology concept developments, standardization and evangelization in the areas of optical control plane, path computation, transport SDN, network cloud platform and orchestration. At Ceterus Network (2001-2006), he was Co-Founder and Chief Network Architect and led a large-scale packet switching system development. At AT&T Labs (1995-2000), He was Principal Member of Technical Staff where he led various systems engineering projects including AT&T next generation router evolution, AT&T common IP/MPLS backbone routing and management, etc. At AT&T Bell Labs (1987-1995), he was Member of Technical Staff and led several routing and switching system engineering projects and network traffic management system development. He received B.A. in Applied Mathematics from U.C. Berkeley (1986), M.S. in Operations Research from Stanford University (1987), and Ph.D. in Decision Science and Engineering Systems from Rensselaer Polytechnic Institute (1996) via AT&T Bell Labs’ doctoral support program.
Session Chair
Sunghyun Choi (Samsung Electronics, Korea (South))
Session KNTU-S2
Keynote
Conference
10:00 AM
—
10:40 AM KST
Local
May 25 Mon, 8:00 PM
—
8:40 PM CDT
Challenges and Opportunities of 5G Mobile Edge Cloud
Dr. Kang-Won Lee (SK Telecom)
17
The 5G services require a network with “high bandwidth and ultra-low latency.” High bandwidth can be enabled by wider frequency bands. To achieve ultra-low latency, however, network operators have come up with the concept of “mobile edge.” By leveraging mobile edge, we can deliver novel 5G applications that can benefit from sub 10msec latency, such as cloud XR, cloud gaming, connected cars, cloud robots.
While providing ultra-low latency itself is useful, this does not fully justify the cost of deployment of numerous edge sites. In fact, it is not difficult to see mobile edge provides a couple of additional benefits: (1) huge volumes of data (that may be generated by, for example, connected cars) can be processed at the edge instead of sending them to a remote data center, which is extremely costly; (2) mission-critical and sensitive data from a smart factory or hospital can be processed at the edge without leaving the site. By enabling edge data processing and local security, mobile edge provides a unique opportunity for mobile service providers to bring new values to its B2C and B2B customers.
In this keynote, I propose that mobile edge should be “programmable” and “cloud native.” This does not mean just running a few VMs at the edge site. At SKT we are developing its mobile edge as a fully functioning cloud. SKT’s MEC or “mobile edge cloud” will provide virtualized infrastructure with Kubernetes, serverless, and service mesh support. We are also pairing our MEC with public clouds so that our users have options to quickly build new applications using widely understood cloud APIs and services. In addition, we will provide our unique service assets, such as telco APIs, natural language processing, real-time data processing, etc. “as a service” to developers so they can quickly build something that was truly not possible before.
I will conclude this talk by presenting several early use cases that we are developing on 5G MEC with our partners.
While providing ultra-low latency itself is useful, this does not fully justify the cost of deployment of numerous edge sites. In fact, it is not difficult to see mobile edge provides a couple of additional benefits: (1) huge volumes of data (that may be generated by, for example, connected cars) can be processed at the edge instead of sending them to a remote data center, which is extremely costly; (2) mission-critical and sensitive data from a smart factory or hospital can be processed at the edge without leaving the site. By enabling edge data processing and local security, mobile edge provides a unique opportunity for mobile service providers to bring new values to its B2C and B2B customers.
In this keynote, I propose that mobile edge should be “programmable” and “cloud native.” This does not mean just running a few VMs at the edge site. At SKT we are developing its mobile edge as a fully functioning cloud. SKT’s MEC or “mobile edge cloud” will provide virtualized infrastructure with Kubernetes, serverless, and service mesh support. We are also pairing our MEC with public clouds so that our users have options to quickly build new applications using widely understood cloud APIs and services. In addition, we will provide our unique service assets, such as telco APIs, natural language processing, real-time data processing, etc. “as a service” to developers so they can quickly build something that was truly not possible before.
I will conclude this talk by presenting several early use cases that we are developing on 5G MEC with our partners.
Session Chair
Sunghyun Choi (Samsung Electronics, Korea (South))